Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1-Adamantyl)-1,3-diphenylpropan-2ol

Eva Babjaková,^a Marek Nečas^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic

Correspondence e-mail: rvicha@ft.utb.cz

Received 19 July 2010; accepted 28 July 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.080; data-to-parameter ratio = 14.0.

In the title compound, $C_{25}H_{30}O$, the adamantane cage consists of three fused cyclohexane rings in classical chair conformations, with C-C-C angles in the range 107.15 (9)– 111.55 (9)°. The dihedral angle between the benzene rings is 46.91 (4)° and the conformation is stabilized by a weak intramolecular C-H··· π interaction.

Related literature

For the preparation and spectroscopic properties of the title compound, see: Vícha *et al.* (2006). For related structures, see: Vaissermann & Lomas (1997); Vícha & Nečas (2010).

Experimental

Crystal data	
C ₂₅ H ₃₀ O	b = 6.3978 (2) Å
$M_r = 346.49$	c = 25.2555 (14) Å
Monoclinic, $C2/c_{\rm o}$	$\beta = 106.183 \ (5)^{\circ}$
a = 24.2808 (10) Å	V = 3767.8 (3) Å ³

Z = 8Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector Absorption correction: multi-scan (*CrysAlis RED*; Oxford

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.033 & 236 \text{ parameters} \\ wR(F^2) &= 0.080 & H\text{-atom parameters constrained} \\ S &= 0.96 & \Delta\rho_{\text{max}} = 0.20 \text{ e } \text{ Å}^{-3} \\ 3315 \text{ reflections} & \Delta\rho_{\text{min}} = -0.21 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C20–C25 ring.

-		-		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14\cdots Cg1$	0.95	2.70	3.3172 (13)	123

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

Financial support of this work by the Internal Founding Agency of Tomas Bata University in Zlin, project No. IGA/7/ FT/10/D, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2292).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341-1343.
- Vícha, R. & Nečas, M. (2010). Acta Cryst. E66, 01626.
- Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.

 $0.40 \times 0.30 \times 0.20 \text{ mm}$

Diffraction, 2009)

 $T_{\min} = 0.965, T_{\max} = 1.000$

17425 measured reflections

3315 independent reflections

2381 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int}=0.024$

Acta Cryst. (2010). E66, o2175 [doi:10.1107/S1600536810030047]

2-(1-Adamantyl)-1,3-diphenylpropan-2-ol

E. Babjaková, M. Necas and R. Vícha

Comment

In the title compound, both benzene rings (C13–C18 and C20–C25) are essentially planar with maximum deviations from their respective best planes of 0.0053 (12) Å for C17 and 0.0073 (12) Å for C25. The angle between the best planes of these rings is 46.97 (3)°. The torsion angles that describe the arrangement of the two benzyl substituents and the adamantane cage – C2–C1–C11–O1, C1–C11–C12–C13, C1–C11–C19–C20, C11–C12–C13–C14 and C11–C19–C20–C21 – are 63.42 (11)°, -134.29 (10)°, -174.22 (10)°, -104.43 (13)°, and 107.99 (13)°, respectively. The conformation of the molecules in the crystal is stabilized by a weak C–H···π interaction, C14–H14···*Cg*1 (*Cg*1 is the centre of gravity of C20–C25), with a C14···*Cg*1 distance of 3.3172 (13) Å (see Fig. 2 and Table 1). In analogy to the previously published structure of 1-adamantyl(diphenyl)methanol (Vícha & Nečas, 2010), no H-bonds were observed in the crystal packing. The shortest distance between two adjacent O-atoms is 4.7666 (11) Å. Surprisingly, the more strained molecules of di(1-adamantyl)(2,5-diisopropylphenyl)methanol with two bulky adamantane cages form O–H···O linked dimers in the solid state (Vaissermann & Lomas, 1997).

Experimental

The title compound was isolated from a complex mixture obtained from the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride as described previously (Vícha *et al.*, 2006). The crystal used for data collection was grown by slow evaporation of a solution in hexane at room temperature.

Refinement

Hydrogen atoms were positioned geometrically and refined as riding using standard *SHELXTL* constraints, with their U_{iso} values set to $1.2U_{eq}$ of that of their parent atoms.

Figures

Fig. 1. Ellipsoid plot (50% probability) of the asymmetric unit. Hydrogen atoms are represented as spheres of arbitrary size.

Fig. 2. Crystal packing viewed along the *b*-axis. Intramolecular C—H··· π interactions are shown as dotted lines. *Cg*1 is the center of gravity of C20–C25. H-atoms (except those which are involved in C—H··· π interactions) have been omitted for clarity.

2-(1-Adamantyl)-1,3-diphenylpropan-2-ol

Crystal data	
C ₂₅ H ₃₀ O	F(000) = 1504
$M_r = 346.49$	$D_{\rm x} = 1.222 \ {\rm Mg \ m^{-3}}$
Monoclinic, C2/c	Melting point: 396 K
Hall symbol: -C 2yc	Mo K α radiation, $\lambda = 0.71073$ Å
a = 24.2808 (10) Å	Cell parameters from 6762 reflections
b = 6.3978 (2) Å	$\theta = 3.0-27.2^{\circ}$
c = 25.2555 (14) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 106.183 \ (5)^{\circ}$	T = 120 K
$V = 3767.8 (3) \text{ Å}^3$	Block, colourless
Z = 8	$0.40 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur	
diffractometer with a Sapphire2 (large Be window)	3315 independent reflections
detector	
Radiation source: Enhance (Mo) X-ray Source	2381 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.024$
Detector resolution: 8.4353 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
ω scan	$h = -28 \rightarrow 28$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	$k = -7 \rightarrow 7$
$T_{\min} = 0.965, T_{\max} = 1.000$	$l = -17 \rightarrow 29$
17425 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.080$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0466P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3315 reflections	$(\Delta/\sigma)_{max} < 0.001$
236 parameters	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 01 0.01323 (3) 0.0262(2)0.97763 (12) 0.09694 (3) H10.0440 1.0301 0.1163 0.039* C1 -0.05610(5)0.0194 (3) 0.71728 (17) 0.10148 (5) C2 -0.08736(5)0.73762 (19) 0.03965 (5) 0.0238(3)H2A 0.029* -0.08070.8790 0.0268 H2B -0.07150.029* 0.6344 0.0187 C3 0.0251 (3) -0.15200(5)0.70122 (19) 0.02840(5)H3 0.7147 -0.01200.030* -0.1710C4 -0.17747(5)0.86215 (19) 0.05970(5)0.0267(3)H4A -0.17171.0049 0.0471 0.032* H4B -0.21920.8381 0.0525 0.032* C5 -0.14785(5)0.84099 (17) 0.0225 (3) 0.12124 (5) H5 -0.16400.9466 0.1420 0.027* C6 0.14074 (5) -0.15777(5)0.62180 (17) 0.0246 (3) 0.030* H6A -0.19940.5969 0.1341 H6B -0.13910.6087 0.1808 0.030* C7 -0.13269 (5) 0.46028 (18) 0.10926 (5) 0.0244 (3) H7 0.029* -0.13950.3168 0.1218 C8 -0.06786(5)0.49578 (17) 0.12020 (5) 0.0232 (3) H8A 0.0999 0.028* -0.05190.3902 H8B -0.04870.4791 0.1600 0.028* 0.0279 (3) C9 -0.16199 (5) 0.48078 (19) 0.04750 (5) H9A -0.2036 0.4547 0.0401 0.034* H9B 0.034* -0.14610.3760 0.0269 C10 -0.08327(5)0.87808 (17) 0.13238 (5) 0.0216 (3) H10A -0.06460.8674 0.1725 0.026* H10B -0.07671.0210 0.1204 0.026* C11 0.00961 (5) 0.76258 (18) 0.11266 (5) 0.0212 (3) C12 0.04245 (5) 0.72698 (18) 0.17460 (5) 0.0230 (3) H12A 0.0137 0.7129 0.1956 0.028* H12B 0.0631 0.5921 0.1776 0.028* C13 0.08517 (5) 0.89325 (18) 0.20235 (5) 0.0221 (3) C14 0.14410 (5) 0.8651 (2) 0.21349 (5) 0.0314(3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	0.1586	0.7389	0.2028	0.038*
C15	0.18185 (5)	1.0196 (2)	0.24008 (6)	0.0395 (4)
H15	0.2220	0.9986	0.2472	0.047*
C16	0.16163 (6)	1.2032 (2)	0.25620 (5)	0.0365 (4)
H16	0.1877	1.3086	0.2743	0.044*
C17	0.10354 (5)	1.2327 (2)	0.24588 (5)	0.0326 (3)
H17	0.0893	1.3582	0.2573	0.039*
C18	0.06578 (5)	1.08006 (18)	0.21888 (5)	0.0270 (3)
H18	0.0257	1.1033	0.2115	0.032*
C19	0.03612 (5)	0.62720 (19)	0.07513 (5)	0.0269 (3)
H19A	0.0262	0.4791	0.0792	0.032*
H19B	0.0183	0.6678	0.0363	0.032*
C20	0.10058 (5)	0.64448 (19)	0.08689 (5)	0.0246 (3)
C21	0.13650 (5)	0.4812 (2)	0.11175 (5)	0.0289 (3)
H21	0.1203	0.3564	0.1213	0.035*
C22	0.19554 (5)	0.4986 (2)	0.12276 (6)	0.0325 (3)
H22	0.2195	0.3857	0.1396	0.039*
C23	0.21958 (5)	0.6795 (2)	0.10939 (5)	0.0323 (3)
H23	0.2601	0.6922	0.1174	0.039*
C24	0.18452 (5)	0.8419 (2)	0.08428 (5)	0.0324 (3)
H24	0.2009	0.9664	0.0748	0.039*
C25	0.12569 (5)	0.8235 (2)	0.07287 (5)	0.0287 (3)
H25	0.1019	0.9355	0.0551	0.034*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0248 (5)	0.0256 (5)	0.0256 (5)	-0.0059 (4)	0.0027 (4)	0.0034 (4)
C1	0.0207 (6)	0.0180 (6)	0.0199 (7)	0.0004 (5)	0.0061 (5)	-0.0003 (5)
C2	0.0221 (6)	0.0273 (7)	0.0218 (8)	0.0001 (5)	0.0058 (6)	-0.0006 (6)
C3	0.0211 (6)	0.0317 (7)	0.0206 (8)	0.0003 (5)	0.0025 (5)	-0.0015 (6)
C4	0.0204 (6)	0.0260 (7)	0.0323 (8)	0.0034 (5)	0.0049 (6)	0.0029 (6)
C5	0.0221 (6)	0.0195 (6)	0.0272 (8)	0.0048 (5)	0.0092 (6)	-0.0014 (5)
C6	0.0197 (6)	0.0262 (7)	0.0293 (8)	0.0006 (5)	0.0091 (6)	0.0017 (6)
C7	0.0234 (6)	0.0168 (6)	0.0345 (8)	-0.0006 (5)	0.0105 (6)	0.0005 (6)
C8	0.0228 (6)	0.0199 (6)	0.0277 (8)	0.0022 (5)	0.0083 (6)	-0.0001 (6)
C9	0.0192 (6)	0.0286 (7)	0.0357 (9)	-0.0032 (5)	0.0072 (6)	-0.0099 (6)
C10	0.0233 (6)	0.0190 (6)	0.0225 (7)	0.0004 (5)	0.0065 (5)	0.0000 (5)
C11	0.0222 (6)	0.0209 (6)	0.0203 (7)	-0.0009 (5)	0.0057 (5)	0.0009 (5)
C12	0.0225 (6)	0.0236 (6)	0.0228 (7)	0.0016 (5)	0.0059 (5)	0.0004 (6)
C13	0.0244 (6)	0.0277 (7)	0.0138 (7)	0.0011 (5)	0.0047 (5)	0.0023 (5)
C14	0.0253 (7)	0.0422 (8)	0.0253 (8)	0.0041 (6)	0.0046 (6)	-0.0077 (7)
C15	0.0238 (7)	0.0638 (10)	0.0297 (9)	-0.0067 (7)	0.0054 (6)	-0.0108 (8)
C16	0.0416 (8)	0.0420 (8)	0.0241 (8)	-0.0154 (7)	0.0062 (7)	-0.0061 (7)
C17	0.0432 (8)	0.0280 (7)	0.0233 (8)	0.0000 (6)	0.0038 (6)	-0.0012 (6)
C18	0.0274 (7)	0.0306 (7)	0.0210 (8)	0.0036 (5)	0.0034 (6)	0.0006 (6)
C19	0.0221 (6)	0.0350 (7)	0.0240 (8)	-0.0010 (5)	0.0070 (6)	-0.0058 (6)
C20	0.0226 (6)	0.0337 (7)	0.0187 (7)	-0.0002 (5)	0.0076 (5)	-0.0076 (6)

C21	0.0299 (7)	0.0269 (7)	0.0323 (8)	0.0002 (5)	0.0126 (6)	-0.0065 (6)
C22	0.0274 (7)	0.0351 (8)	0.0346 (9)	0.0096 (6)	0.0082 (6)	-0.0060 (7)
C23	0.0193 (6)	0.0439 (8)	0.0338 (9)	0.0003 (6)	0.0077 (6)	-0.0077 (7)
C24	0.0283 (7)	0.0403 (8)	0.0313 (9)	-0.0021 (6)	0.0129 (6)	0.0021 (7)
C25	0.0256 (7)	0.0394 (8)	0.0224 (8)	0.0046 (6)	0.0086 (6)	0.0046 (6)
Geometric param	neters (Å, °)					
O1-C11		1.4414 (13)	C11—C	19		1.5500 (16)
O1—H1		0.8400	C11—C	12		1.5620 (16)
C1—C2		1.5397 (16)	C12—C	13		1.5144 (15)
C1—C8		1.5454 (15)	С12—Н	112A		0.9900
C1—C10		1.5459 (15)	С12—Н	12B		0.9900
C1—C11		1.5680 (15)	С13—С	18		1.3906 (16)
C2—C3		1.5331 (15)	С13—С	14		1.3910 (15)
C2—H2A		0.9900	C14—C	15		1.3876 (17)
C2—H2B		0.9900	С14—Н	14		0.9500
C3—C4		1.5296 (16)	C15—C	16		1.3774 (19)
С3—С9		1.5316 (17)	С15—Н	15		0.9500
С3—Н3		1.0000	C16—C	17		1.3741 (17)
C4—C5		1.5258 (17)	С16—Н	16		0.9500
C4—H4A		0.9900	С17—С	18		1.3824 (17)
C4—H4B		0.9900	С17—Н	17		0.9500
C5—C6		1.5276 (15)	С18—Н	18		0.9500
C5—C10		1.5323 (15)	С19—С	20		1.5136 (15)
С5—Н5		1.0000	С19—Н	19A		0.9900
C6—C7		1.5299 (15)	С19—Н	19B		0.9900
C6—H6A		0.9900	С20—С	25		1.3891 (16)
C6—H6B		0.9900	С20—С	21		1.3929 (17)
С7—С9		1.5289 (17)	C21—C	22		1.3866 (16)
С7—С8		1.5373 (15)	С21—Н	21		0.9500
С7—Н7		1.0000	С22—С	23		1.3798 (18)
C8—H8A		0.9900	С22—Н	22		0.9500
C8—H8B		0.9900	С23—С	24		1.3801 (17)
С9—Н9А		0.9900	С23—Н	123		0.9500
С9—Н9В		0.9900	C24—C	25		1.3812 (16)
C10—H10A		0.9900	С24—Н	24		0.9500
C10—H10B		0.9900	С25—Н	125		0.9500
C11-O1-H1		109.5	C5—C1	0—H10B		109.4
C2—C1—C8		107.87 (9)	C1—C1	0—H10B		109.4
C2-C1-C10		107.26 (9)	H10A—	-C10—H10B		108.0
C8—C1—C10		108.34 (9)	01—C1	1—C19		107.30 (9)
C2—C1—C11		110.87 (9)	01—C1	1—C12		111.20 (9)
C8—C1—C11		112.33 (9)	C19—C	11—C12		110.36 (9)
C10-C1-C11		110.01 (9)	01—C1	1—C1		105.31 (9)
C3—C2—C1		111.40 (9)	C19—C	11—C1		111.21 (9)
C3—C2—H2A		109.3	C12—C	11—C1		111.29 (9)
C1—C2—H2A		109.3	C13—C	12—C11		116.98 (9)
C3—C2—H2B		109.3	С13—С	12—H12A		108.1

C1—C2—H2B	109.3	C11—C12—H12A	108.1
H2A—C2—H2B	108.0	C13—C12—H12B	108.1
C4—C3—C9	109.56 (10)	C11—C12—H12B	108.0
C4—C3—C2	110.03 (10)	H12A—C12—H12B	107.3
C9—C3—C2	108.99 (9)	C18—C13—C14	117.77 (11)
С4—С3—Н3	109.4	C18—C13—C12	119.81 (10)
С9—С3—Н3	109.4	C14—C13—C12	122.40 (11)
С2—С3—Н3	109.4	C15—C14—C13	120.59 (12)
C5—C4—C3	108.84 (9)	C15—C14—H14	119.7
C5—C4—H4A	109.9	C13—C14—H14	119.7
C3—C4—H4A	109.9	C16—C15—C14	120.59 (12)
C5—C4—H4B	109.9	C16—C15—H15	119.7
C3—C4—H4B	109.9	C14—C15—H15	119.7
H4A—C4—H4B	108.3	C17—C16—C15	119.53 (12)
C4—C5—C6	109.76 (10)	С17—С16—Н16	120.2
C4—C5—C10	109.94 (10)	C15—C16—H16	120.2
C6—C5—C10	109.16 (9)	C16—C17—C18	120.06 (13)
C4—C5—H5	109.3	С16—С17—Н17	120.0
С6—С5—Н5	109.3	С18—С17—Н17	120.0
С10—С5—Н5	109.3	C17—C18—C13	121.46 (12)
C5—C6—C7	109.34 (9)	C17—C18—H18	119.3
С5—С6—Н6А	109.8	C13—C18—H18	119.3
С7—С6—Н6А	109.8	C20—C19—C11	114.97 (10)
С5—С6—Н6В	109.8	С20—С19—Н19А	108.5
С7—С6—Н6В	109.8	С11—С19—Н19А	108.5
H6A—C6—H6B	108.3	C20—C19—H19B	108.5
C9—C7—C6	109.44 (10)	C11—C19—H19B	108.5
C9—C7—C8	109.43 (10)	H19A—C19—H19B	107.5
C6—C7—C8	110.04 (10)	C25—C20—C21	117.97 (11)
С9—С7—Н7	109.3	C25—C20—C19	120.90 (11)
С6—С7—Н7	109.3	C21—C20—C19	121.13 (11)
С8—С7—Н7	109.3	C22—C21—C20	120.84 (12)
C7—C8—C1	110.35 (9)	C22—C21—H21	119.6
С7—С8—Н8А	109.6	C20—C21—H21	119.6
C1—C8—H8A	109.6	C23—C22—C21	120.17 (12)
С7—С8—Н8В	109.6	С23—С22—Н22	119.9
C1—C8—H8B	109.6	C21—C22—H22	119.9
H8A—C8—H8B	108.1	C22—C23—C24	119.65 (12)
С7—С9—С3	109.32 (9)	С22—С23—Н23	120.2
С7—С9—Н9А	109.8	С24—С23—Н23	120.2
С3—С9—Н9А	109.8	C23—C24—C25	120.11 (13)
С7—С9—Н9В	109.8	C23—C24—H24	119.9
С3—С9—Н9В	109.8	C25—C24—H24	119.9
Н9А—С9—Н9В	108.3	C24—C25—C20	121.25 (12)
C5-C10-C1	111.28 (9)	С24—С25—Н25	119.4
С5—С10—Н10А	109.4	С20—С25—Н25	119.4
C1C10H10A	109.4		
C8—C1—C2—C3	58.61 (12)	C8—C1—C11—C19	68.28 (13)
C10—C1—C2—C3	-57.89 (12)	C10—C1—C11—C19	-170.96 (10)
	. /		

C11—C1—C2—C3	-178.01 (9)	C2-C1-C11-C12	-175.98 (9)
C1—C2—C3—C4	60.09 (13)	C8—C1—C11—C12	-55.21 (12)
C1—C2—C3—C9	-60.06 (12)	C10-C1-C11-C12	65.55 (12)
C9—C3—C4—C5	60.47 (12)	O1-C11-C12-C13	-17.22 (14)
C2—C3—C4—C5	-59.33 (12)	C19—C11—C12—C13	101.75 (11)
C3—C4—C5—C6	-60.57 (11)	C1-C11-C12-C13	-134.29 (10)
C3—C4—C5—C10	59.52 (12)	C11-C12-C13-C18	77.21 (14)
C4—C5—C6—C7	60.41 (12)	C11-C12-C13-C14	-104.43 (13)
C10-C5-C6-C7	-60.15 (13)	C18—C13—C14—C15	-0.20 (19)
C5—C6—C7—C9	-59.80 (12)	C12-C13-C14-C15	-178.59 (12)
C5—C6—C7—C8	60.48 (13)	C13—C14—C15—C16	0.4 (2)
C9—C7—C8—C1	60.66 (12)	C14-C15-C16-C17	0.1 (2)
C6—C7—C8—C1	-59.63 (13)	C15-C16-C17-C18	-0.8 (2)
C2—C1—C8—C7	-58.44 (12)	C16—C17—C18—C13	1.0 (2)
C10-C1-C8-C7	57.36 (12)	C14-C13-C18-C17	-0.49 (18)
C11—C1—C8—C7	179.08 (10)	C12-C13-C18-C17	177.94 (12)
C6—C7—C9—C3	59.81 (12)	O1-C11-C19-C20	71.11 (13)
C8—C7—C9—C3	-60.84 (12)	C12-C11-C19-C20	-50.21 (13)
C4—C3—C9—C7	-60.35 (12)	C1-C11-C19-C20	-174.22 (10)
C2—C3—C9—C7	60.09 (12)	C11—C19—C20—C25	-72.41 (15)
C4—C5—C10—C1	-60.40 (12)	C11-C19-C20-C21	107.99 (13)
C6—C5—C10—C1	60.05 (13)	C25—C20—C21—C22	0.84 (19)
C2-C1-C10-C5	58.06 (12)	C19—C20—C21—C22	-179.55 (11)
C8—C1—C10—C5	-58.14 (12)	C20-C21-C22-C23	0.34 (19)
C11—C1—C10—C5	178.72 (9)	C21—C22—C23—C24	-0.9 (2)
C2-C1-C11-O1	63.42 (11)	C22—C23—C24—C25	0.3 (2)
C8—C1—C11—O1	-175.82 (9)	C23—C24—C25—C20	0.9 (2)
C10-C1-C11-O1	-55.05 (12)	C21—C20—C25—C24	-1.47 (19)
C2-C1-C11-C19	-52.49 (12)	C19—C20—C25—C24	178.92 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C20–C25 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C14—H14…Cg1	0.95	2.70	3.3172 (13)	123.

